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Abstract 

A direct approach to propositional systems, influenced by the exposition of Jauch & Piron 
(1968), is formulated. Further motivations and interpretations in experimental terms are 
given and worked Out explicitly. The orthocomplementation is introduced independent of 
weak modularity by two postulates on the set of questions. Weak modularity and atom- 
ieity are reduced to requirements on the set of preparation procedures. It is shown that 
preparative measurements are not needed in order to impose the covering law. The latter 
can also be reduced to a postulate on the set of preparations. 

! 

Birkhoff & Neumann (1936)have shown how a logic of  propositions on 
quantum systems can be used to derive the usual structure of  quantum mech- 
anics. They assumed this logic to be a modular lattice. As pointed out by Piron 
(1964) and Jauch (1968) this assumption seems to be unrealistic. Firstly, in 
the usual interpretation o f  quantum mechanics propositions correspond to the 
closed subspaces of  a Hilbert space which do not form a modular lattice. 
Secondly, it seems questionable whether a physical system can be localisable if 
the logic of  propositions is a modular lattice in which the distributive law does 
not hold. A new axiomatic scheme which does not require modularity has 
been given by Piton ( t964).  It is reasonable because the axioms imply the 
logic to be isomorphic to some sublattice o f  closed subspaces of  a Hilbert 
space. 

In formulating their axioms Bilkhoff & Neumann ( t936)  as well as Piron 
(1964) have looked for some weaker structure than phase space logic of  
classical mechanics preferring, on the other hand, the strongest one into which 
the usual quantum mechanics can be fitted. This fruitful method has given 
appropriate axioms and an interpretation resulting from comparison of  the 
n e w  structure with that of  classical mechanics. As phase space in classical 
mechanics is itself a very abstract construct, the.concepts used in that inter- 
pretation are not very suitable in deciding which axioms seem obvious from 
the outset and which seem to make serious statements on reality. 
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A step forward in interpreting the axioms in less abstract terms describing 
the experimental situation is made by Jauch & Piron (1969), Jauch (1968) 
and Piron (1972). The concept of a question as any measurement prescription 
for experiments with only two possible outcomes is introduced as basic. 
Propositions are now understood as classes of equivalent questions. The axioms 
arise as requirements on the set of questions, state preparations, and operations 
on states of  a physical system which actually can be performed. 

This axiomatic scheme can be divided into two parts. The first part implies 
the lattice of propositions, now called propositional system, to be a CROC, i.e. 
a complete, orthocomplemented, and weakly modular lattice, and makes 
explicit assumptions neither on state preparations nor on operations on states. 
The second part makes assumptions on state preparations in order to imply 
the lattice atomic, and, finally, assumptions on operations in order to imply 
the covering law. 

Some conceptual difficulties are inherent in the expositions of Jauch and 
Piron. Motivations and interpretations given are partly very short or only 
sketched and have led to misunderstandings (Ochs, 1972a, 1972b). Another 
point is the introduction of  the compatible complement (Piton, 1972). It is 
introduced as some kind of commensurable or, more precisely, as a coexistent 
complement. One expects some motivation to axiom P from this, but no con- 
nection is given. Take axiom C (Piton, 1972, p. 294) to state: 'For each 
proposition there is a choice of a complement which We call the compatible 
choice'. Then the Theorem (Piron, 1972, p. 295) 'Let ~ be a CROC. If one 
interprets the orthocomplement as a compatible complement, then .£Psatisfies 
axioms C and F would serve equally well as a motivation for axioms C and P. 
The requirement a = [a] and a' = [a ~] is not used in the proof. That the com- 
patible • complement is introduced in. this way is neither motivated nor used in 
the sequel by Piron. Because there may be several coexistent complements 
unless axiom P is stated, this does not even fix the choice of a unique 
complement. 

In this paper an approach to propositional systems is given, which works 
out explicitly the connection of the axioms 6f Piron with postulates on real 
preparations and measurements. We begin with a give n set of preparation 
procedures and a given set of questions and derive the structure of the prop- 
ositional system from postulates on the extension of these sets. 

We shortly review, along the lines of  Piron's reasoning, how a natural 
structure of the set of  questions gives the propositional system the structure 
of  a complete lattice (Section I). Then we try to interpret the propositions as 
statements about properties of physical systems. This motivates two postulates 
on the extension of the set of questions, which fixes an orthocomplementation 
independent of weak modularity (Section III). Weak modularity and atomicity 
are reduced to two postulates on the extension of the set of preparation 
procedures (Sections IV and V). 

We are then left with the problem of motivating the covering law, which is 
sufficient to carry through the coordinatisation procedure connecting the 
usual quantum mechanics with the propositional calculus. We think the assump 
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tion of  ideal questions of the first kind is not a realistic basis for motivating the 
covering law and replace it by a superposition postulate which we show to be 
an equivalent basis for this purpose (Section VI). 

At the end of  Section VI we mention a subsequent paper containing results 
on the problem of how to formulate measuring processes if the covering law 
does not hold for the object system. 

Another motive for writing this paper was the fact that the great math- 
ematical simplicity of the direct approach to propositional systems makes it 
accessible also to non-specialists in foundations of quantum mechanics. This is 
in contrast to the probabilistic approach, which presupposes the study of 
duality theory of partially ordered linear spaces. 

H 

Let us be givena physical system, some set ST'of preparation procedures for 
it, and some set .~ of questions, such that any a E ~ can be combined with 
any s E 5~to give a prescription for experiments with only two outcomes, "yes' 
and 'no', possible. We require that the experiments can be carried t h rou~  arbi- 
trarily often and call a question 'true" for a preparation procedure if the 
probability for outcome yes is one. Truth is only stated for preparations in 
which any single system prepared by the prescribed procedure determines the 
outcome yes.t So the truth of a question is a statement on single systems in 
contrast to the statement that a probability is unequal to zero or one, which 
applies only to ensembles. 

We define a completion .~ of .~ by the following steps: 

(i) Adjoin to .~ a question [ which on any s E S~gives the outcome yes, 
and denote the join by -~. 

(ii) For a E .~ define v a  by: The outcome of~,a is yes iff tile outcome of 
a is..no, and the outcome of  va is no iff the outcome of ct is yes. Adjoin 
to .~ all ua with a E ..~, and denote the join by ~ .  

We denote v I  by q5 
(iii) Let ( a i } i ~  1 denote an arbitrary subset of .~. Define the question 

lli~,r a i by : Carry through one r a n d o m l y  chosen a i and take the result 
to be that of II  i ~  I a i .  Adjoin H i ~ j a i for all subsets of .~ to .~, and 
denote the join by .~. 

We denote I 'Ii~{1,2 } a i by al~2. 

One easily checks that v H i ~ j ~i and 11 iE J voti prescribe exactly the same 
manipulations for arriving at a yes or no result. Thus the outcome of any 
single experiment does not depend on whether we interpret it as H i ~ j ~t i or 
as v IIt~ J o~i. So we shall identify both.:~ Then ct E .~ implies ~ E .~. v is a 
bijection on ,~.  

t More precisely, this can only be stated in the sense o f  stochastic convergence: If  a is 
true, the outcome no can arise at most for a f'mite subset o f  a sequence o f  infinitely many 
experiments. 

:~(a. ua) -- u(ot. ~ )  is no contradic t ion because a .  ~ is unequal to d~. 
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The subset of  preparation procedures for which a given a is true will be 
denoted by ~ (a), d~(a) C 55. Propositions are then defined by 

[a] =: {~1 ¢(~) = ¢ ( @ .  

We call [et] 'true' for a preparation procedure if there is a 3' @ [a] which is 
true and denote by d7 ([a]) the subset of preparation procedures for which a 
given [e~] is true. Then by [a] ~-~ 6? ([a]) the set of propositions, which we 
denote by [.~ ], is mapped injectively into the power set of 67 ~. The statement 
"[1~] is true whenever [a] is true' with respect to Sais expressed equivalently 
by ~ ([t~])C C_ ~ ([~3]). We write [a] < [/3] iff 

¢([a]) c_ ¢([~1). 

This introduces a partial ordering on [2  ] which means "[~] implies [/3]'. 
From (iii) in the definition of .q. it follows that 

0([ H a id  = t"l d~([~,-l)=g.l.b.{O([ail)}i~s. 
i E d  i ~ d  

From this one easily concludes that the greatest lower bound exists for any 
subset of [.,~]. As [.~] itself has an upper bound, [I], a well-known theorem 
states that tlfe lowest upper bound exists for any subset of [.~ ]. Hence 
([2~ ], ~<) is a complete lattice. 

We denote the lattice operations meet and join in ([ ~ ] ,  <) by ^ and 
v respectively. [a] h [/3] can be interpreted by '[a] and [~3]' and ^ is a 
conjunction, in the usual sense because of 

¢ ( H  ^ [~1)-- ¢ ( [ ~ l ) n  ~([t~]). 

In contrast [a] v [/3], which we interpret as '[a] or [/3]', is not a disjunction 
in the usual sense. In fact, we only have d~([a]) U 0([/3]) C_C_ O([a] v [/3]), so 
[a] v [/3] may be true although neither [a] nor [~] is true. 

This construction of ([.,q ], < )  as acomplete lattice'needs no assumption 
about the extension of the given sets S~'and .~. Such assumptions will be made 
in order to impose further structures. 

III 

A proposition [a] is true for any single system which is prepared by a 
procedure in d~([a]). This presumes to interpret [a] in a predicate calculus, 
stating that the property ([a])is present iff [a] is  true. The property ([a]) is 
defined by the class of equivalent measurement procedures [a]. 

By this we are given a set of procedures to prepare systems which have 
property ([a]) and a set of questions, namely [a], by which this property 
may be detected. But we do not know what the absence of ([a]) means, If [a] 
is not true for a preparation procedure, two cases may arise. Either there is a 7, 
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7 ~ -~, [a] < [7] such that [vT] is true, or for all such 7 [17),] is not true. We 
define ([o~]) to be absent for any physical system prepared by a procedure for 
which the first case arises. 

In the second case we do not know in advance whether, for a sin#e system, 
the outcome will be yes for 7 or v7. Both are possible for any 7, [5] ~< [7]. 
This does not imply that a property may be neither present nor absent for a 
given physical system. Such a conclusion would presuppose a basis for assuming 
any system prepared by a certain procedure to have the 'same properties'. A 
basis for this would be given by a suitable concept of pure states. 

Until now there need not be a proposition in [.~ ] which defines absence of 
([5]) because there may be no ~5 in 

such that [vS] is maximal. In other words; absence of a property is not, in 
general, a property in the sense introduced above unless we require 

Postulate 1. For any e, c~ E .~ ,  there is a 5, ~i E o~'([a]), such that 
~, E 5([c~1) implies [v7] < [vS]. 

One easily checks [vS] to be unique. So we may define the mapping 

Some properties which are proved in the appendix are listed: 

(ii) For any a, 5 E -~, there is a e, e E -~, such that e ~ ¢2 [5], and 

(iii) [5] =  [51. 
(iv) ~[5] <tp[fl] is equivalent to¢2[~] ~p2[/3]. 
(v) ^  2[a] 

, 2 ( , [ 5 ]  v ,2151)--  [,q. 

By Postulate 1 we have, to any property ([5]), a counterpart, (~[5]), which 
means '([5])is absent'. But (i)leaves open whether the absence of (9(ct]) . 
implies [ct]. Moreover, equality in (i) would imply ~ to be an orthocomple- 
mentation which is, by (ii), compatible in the sense of Piron. 

Theorem I. ~ is an orthocomptejnentation on ([ .~],  < )  iff~([ .~]) = [.~]. 

Proof. Let ~( [ ;~] )=  [ .~] , then [a] E [ ~ ]  implies [5] = ~ [ f l ] , / ~  .~. So 
[51 = [51. 
By (iii) through (vi) ~ is an orthocomplementation. The converse is trivial. 

Postulate 2. ¢ ( [ .~ ] )=  [.~1. 
So an orthocomplementation is imposed on the propositional system by two 

requirements on the extension of the set .~ of questions. Further structures will 
n o w  be imposed by requirements on the extension of the set oq'of preparation 
procedures. 
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I V  

There are well-known criteria for an orthocomplemented lattice to be weakly 
modular (Rose, 1964). We show one of them in the following form. 

Theorem 2. ([.~ ], ~,  ¢) is weakly modular if and only if [a] ~< [13] implies 
that ~[a] ^ [/3] = [q~] is equivalent to [a] = [/3]. 

Proof. Let ([.~ ], ~<, ~) be weakly modular, [c~] < [/3], and ~[c~] ^ [/3] = [~]. 
Hence [/3] = [c~] v (¢[a] ^ [/3]) = [a]. Conversely, let the condition hold, and 
b ]  < I/3l. Then In] =: ([/3] ^ ~013']) v [7] ~< [/3]. Moreover, ~o[a] ^ [/3] = 
¢ ( ~ 1  ^ ~ [v l )  ^ ~[vl  ^ L~I = ['I'1. So [~l = ([/31 ^ ~ b l )  v [~t] = [~l. 

The condition of the theorem can easily be interpreted. If [a] ~ [/3], then 
[a] :~ [/3] is equivalent to d~ (¢[a])  n • (L~]) ~ ~, i.e. there is at least one 
preparation procedure such that property ([~]) is absent and property ([/3]) is 
present for any physical system prepared in the prescribed manner. In order to 
impose weak modularity on ( [ ~  ], < ,  ¢) we have to require: 

Postulate 3. If [a] < [/3], then [a] ~ [/3] is equivalent to O(q[c~]) n 
o([/31) ~ ~. 

We shall now consider sets of preparation procedures and introduce a 
concept of  pure states. For a subset s of S~'we define 

t ( s )  =: {[a] ][0l] is true ifs E 5}. 

If [a] ~ t(~), then ~o[oL] ~ t(~). This follows from 0 ([a]) N O(~p [a]) = ¢. 
From [I] E t(s)  we have [~] ~ t(s) .  Moreover [ a ] E  t(s)  and [/3] E t ( s )  
implies 

[~l ^ [~1 ~ t(~) .  

If we denote the power set ofS~by ,~ (S#), the mapping 

t ( s ) ~  ^ [~l 
t(s) 

is bijective. It is surjective because//o t(O(['r])) = ['t], [7] ~ [-~]\( [q~] ). It is 
injective because ~ o t ( s )  = ~ o t(u) implies t (5) = t(u),  which is easily 
checked by t(~) = ([a] I~o t ( s )  ~< [a] }. 

A set s of preparation procedures is given, if certain macroscopic con- 
ditions are only approximately fulfilled in the experimental set-up. Any s E a 
which may arise in a single experiment works equally well if one needs only 
systems with property (~ o t(s)). 

We introduce Classes of equivalent sets of preparation procedures by 

[s]  =: { t t l u E ~ ( f f a )  , t ( t t )= t (~ )} .  
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But u is pure, so 

a([{s} l )  = a(lu]) <,p[al.  

Now a([u]) ~< ~p[a] ^ In] implies a([u]) = [~], a contradiction. 
Sufficiency is trivial. 

By Theorem 3 the lattice ( [ ~  ], 4 ,  ~p) is atomic if we require. 

Postulate 4. Let s be a set of preparation procedures, then there is a pure 
set u, such that [u] < Is]. 

The classes of pure sets of preparation procedures are mapped bijectively 
onto the set of atoms of ([ .~ ], < ,  ~p). If u is a pure set and a([u]) = e the set 
of properties present will be {([a] ) [In] i> e} and the set of properties absent 
will be {(¢[a]) I [a] 1> e} = {([7I) I [71 < ~oe}. 

Are we fight to assume any system prepared by an s, [{s}] = [u], u pure 
with respect to .~, to be in the same pure state? The first argument against 
such an assumption is that this concept of pure states depends on .~ because 
any question not included in .~ may distinguish between systems prepared by 
different procedures sl, [(st}] = [u]. It is necessary therefore to include into 
.2 any question possible in nature. This is done by Piton. A second argument 

against the above assumption is that different s l may be distinguished by 
different probabilities for the occurrence of yes if a question ~, a ([n]) ~ [~] 
and [8] ~ ~a([u]) is measured. 

PROPOSITIONAL. SYSTEMS AND MEASUREMENTS-I 

l'hen the mapping 

a:  fa~(.@)l-~ [ a l \ { [ ¢ ] )  
[sl ~ ~o t(u), u~  [s l  

is bijective, and the classes of equivalent preparations are partially ordered by 

[s]  < [u] iff a ( [ s l ) < a ( [ u l ) .  

The interpretation of this partial ordering is easily given: If u suffices to 
impose a property ([a]) on any physical system, so will s .  But s may impose 
more properties. 

Definition. Let u E~(o~'~. We call u 'pure' with respect to .~ if 

[*l < ["l implies i s ]  = [u I. 

Theorem 3. tt is pure with respect to .~ if and only if a([ u]) is an atom in 
( [ a l , < , ~ ) .  

Proof. The condition is necessary: Let [~] ~ [a] < a([u]), and assume 
[a] =~ a([u] ). Then by Postulate 3 we have an s, 

s e  • (~,[~,l) n ¢(a([ul)) .  
Hence 

a( t {s ) ] )<a([ tq)  A 9[a] < a([u]). 
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By abuse of language we shall call any system prepared by an s, [(s}] = [u], 
u pure, to be in the same pure state with respect to ~ .  By the arguments just 
given, we note that this concept of pure state cannot serve as a suitable basis 
for assuming all systems in the same pure state to possess 'the same properties'. 

Let us consider a pure state which corresponds to the atom e in [ .~ ] and a 
property (Its]). Then one of three cases can occur: First, e < [a], then ([a]) is 
present; second, [a] ~ SOe, then (In]) is absent; third, e ~ [a] and [a] ¢ SOe, 
we then call ([a])  possible. 

VI 

Postulates 1 through 4 impose the propositional system ([.~ ], < ,  SO) to be a 
complete, orthocomptemented, weakly modular, atomic lattice. A coordinati- 
sation, which brings in the linear structure of usual quantum mechanics, is 
possible if the covering law holds in ([ .~], < ,  ~). 

Piton suggests that structure on ([.~ ], ~ ,  SO) by the requirement that any 
proposition contains an ideal question of the first kind. Ideal questions and 
questions of  the first kind (Piron, 1972, p. 296) are much more special con- 
cepts than those questions (Piron, 1972, p. 290) which we have used until 
now. In fact, ideal questions and questions of  the first kind are to be under- 
stood as preparative measurements or operations on states. 

In classical physics no problems arise from the assumption of ideal measure- 
ments of the first kind, which may be considered as a principle of classical 
observation. But measurements on quantum systems pre-suppose an interaction 
process prior to any observation which cannot be described in terms of classical 
physics. 

Generally, the quantum object becomes part of the measuring apparatus whet 
a proposition is measured. Further experiments on the same physical system are 
then impossible. Moreover, as in general the system is not isolated after the 
measurement, it makes no sense to speak of its state after the measurement. 

Preparative measurements arise as a special case. Assume preparative 
measurements to be possible for any proposition. Wigner (1952) has shown 
that such measurements cannot be ideal and of the first kind for certain 
propositions if there are universal additive conservation laws. So we will look 
for another motivation for the covering law. 

Typical for quantum systems is the superposition principle, which is welt 
founded by diffraction experiments and basic to most calculations of quantum 
mechanics which are confirmed by experience. We formulate a superposition 
postulate which can serve as a realistic basis for imposing the ~overing law. 

Consider a property (Its]) and a pure set of preparation procedures u, such 
that a([u])  ~ [a] and a([u])  gg SO [a]. Then both ([a]) and (¢[a]) are possible 
in this pure state with respect to .~ .  We call 'superposition postulate' the 
assumption that there are two other pure sets of  preparation procedures, 
zi (i = 1, 2), such that a ( [ s t ] )  < [a], a([s2] ) < s0[a], and 

a( [u l )  v a ( [~d)  = a([u])  v a([s2])  = a ( [s i ] )  v a([ ~21) (+) 

holds true. 



PROPOSITIONAL SYSTEMS AND MEASUREMENTS-I 285 

Clearly, the superposition postulate is different from the superposition 
principle formulated by Jauch (1968, p. I06). This states, for an irreducible 
part o f  the propositional system, that, given any two different atoms, let them 
be given by a ( [u] )  and a([~l]  ), then there is a third, different from both, let it 
be given by a([s2]),  such that (+)holds true. In contrast, our superposition 
postulate applies only i f a ( [ u ] )  ~ e a ( [ s l ]  ) and then requires the existence of  
an atom a([s2] ) < ~a([~l ] ) .  The superposition postulate can be stated irregard- 
less of  whether or not the lattice has trivial centre. If [c~] is in the centre and e 
is an atom, then e • [a] and e ~ ~[a] is impossible. So the superposition 
postulate holds trivially if [t~] is a central element. On the other hand, if e < [3] 
and e < ¢[fl], let i denote the unique atom of  the centre with e < i. Then, if 
e n (n = 1, 2) denote atoms in [.~ ], e I v e = e 2 v e = e I v e 2 implies e I < i 
and e 2 dg i. in order to prove this, assume e ! < ], ] ~ i, ] atom of  the centre. 
Then (e 1 v e) ^ ] = (e I ^ ]) v (e A ]) = e t and this is equai to  (e 2 v e) A ] = 
e 2 ^ ]. But e I = e 2 ^ ] implies e I = e 2, thus e I = e 2 = e, a contradiction. So 
the superposition postulate in the non.trivial case reduces to an irreducible 
component of  ([.~ ], ~<, 4) in a natural way.t  

We have the following theorem, which is proved in the appendix. 

Theorem 4. Assume Postulates 1 and 2, and the complete orthocompte- 
mented lattice to be atomic. Then the superposition postulate is equivalent to 
weak modularity together with the covering law. 

So we can impose on ([2~ ] ,  < ,  ~) the covering law to hold by the require- 
ment of  the superposition postulate. Then also the superposition principle will 
hold in any irreducible component of  ([.~ ], < ,  ~p). 

The superposition postulate holds trivially for classical systems but does 
not make any statement. So a motivation can hardly be derived from everyday 
experience. The only thing one can state is that it works ih quantum mechani- 
cal computations and gives an explanation for diffraction experiments. It 
comes into play if the distributive law does not hold and one may ask whether 
it is necessary. We know that ideal questions of  the first kind can be described 
by lattice operations if the superposition postulate holds. A more interesting 
problem is whether measuring processes can be formulated at all if the super- 
position postulate does not hold. 

In a subsequent paper we shall give a formulation of measuring processes in 
terms of  propositional systems. The covering law will not be required for the 
propositional calculi of  object and apparatus. Observations on the apparatus 
will be described by questions in the sense used here. We derive a necessary 
and sufficient criterion for a question e to have property (if) of  Section Ill, 
i.e. [re]  = ~o[e], and a theorem which connects commensurability and com- 
patibility. So it makes sense to consider physical systems the propositional 
calculi of  which do not fuWd the superposition postulate. 

t For details of decompositions of orthocomplemented atomic lattices see MacLarcn 
(1964). 
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Appendix 

We verify the statements (i) through (vi) of Section III by the following 
steps: 

(A1) I f t  E ~o[ct], then for any 7 E ~ ( [ 5 ] )  we have [vS] ~< [~]. 
This is obvious. 

(A2) For any/3 E ~o[a] we have [a] ^ It] = [~]. 
There is a 8 E,.W([a]) with [v8] = ~p[c~]. Hence [t3] = [vS], and [a] ~< [8]. 

'lids proves (A2). 
(A3) We have [a] ~< tp = [a]. 
By Postulate 1 there is a 8 ~ .~([5])wi th  ~6 E ~p [cz] and a e ~ ,~ (~[a ] )  

with veE~2[u] .  So [w'/] ~< [va] for any 7 ~ ( [ a ] ) ,  and [v~] ~< [re] for 
any r ~,~r(~ [5] ). Now ~8 ~ ,~(~[a]) ,  thus [v~a] -- [5] <~ [re]. From 
G ~ , ~ ( [ a ] )  then follows [5] ~ [8] ~ [ve] = ~ ( [ r q ) .  This proves (A3). 

(A4) For any 5, t~ ~ .~, there is a e, e ~ .~, such that e ~ ~2 [a] and 

For any a ~ .~ there is an ~ := ve ~ . ~ ( ¢ [ 5 ] )  with vg = e ~ ~ [c~], which 
means e ~,~([ct]) .  Then Postulate I requires [,~e] ~<¢[5]. Because of 

Eo~'(~[u]) we get ve ~ ¢[a].  
(.4,5) We have ~,n [51 = sa m-  : [5] if m ~> 3. 

This becomes clear by the definition of~[u]  and because of¢~[5] > [5]. 
(A6) [a] < [/~] implies ¢[/3] ~<¢[a]. 
We have~'([#])c_..,~([a]). Hence ¢[#] ~<¢[5] according to the definition 

of~.  
(A7) ~[/~] < ~[a] is equivalent to ~2 [a] < ~ [/3]. 

This is obvious by (A5) and (A6). 
(A8) We have 

and 

~([~l v I~ ] )<~ [~ ]  ^ ~[/31, 

~([~,] ^ [~])~>~[5] v~[~].  

These formulas are easily derived from (A6). 
(A9) We have 

~o=([,q A [~1)<~@[51 v ~,[tl)<~o=[5l ^ ~=[~l, 
and 

~2([a] v I~1) i> ~(~[a] ^ ~[~1) >1 ~ [a] v ~ I~]. 

Both formulas are easily derived by repeated use of (A8). 
(A10) ~p2([ct] v [/~]) = ~p(~p[a] h ~[fl]) = ¢2(¢2 [5] V ~p2 It]). 
Using (A3) we get ~p2([a] v [l]) < sa2(~P 2 [a] v ~2 Jill). Moreover, applying 

(AS) and (A6) to (A9) we get ~(~[r,] ^ ~P[i] ) ~ ~p2(~p2 [a] v ~p2 [i]). These 
formulas, together with (A9), provide the assertion. 

(AI I) ~[a] ^ ~[i]  < ~P[3'] implies ~2(~2 [a] v ~p2 ~ l )  > 92 [7]. 
This is easily proved if one applies (A6) and then (A10). 
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(AI2) We have ~¢[q5] = [/1 and ~[I] = [q~]. 
By cI, e . ~ ( [ e ] )  we have ~ [ e l  > [vcl = [ q .  By ~ ( [ / l )  = {I} we have 

~o[I] = [vI] = [cI,]. 
(A13) We have 9[a] ^ 92 [a] = [~I,] and 92(9[a] v ~p2 [a]) = [.r I. 
The first formula is clear by (A2). Application of  (A5), (A 11), and (A12) 

furnishes 9[qbl = [II < ¢2(93 [o,l v # [51) = ~2@[od v 92 [M). 
By (A3), (A4), (A5), (A7), and (AI3) the statements of Section IIi are 

proved. 

We now approve Theorem 4 of  Section VI. Firstly we show, that the super- 
position postulate is sufficient to impose weak modularity and the covering 
law. We assume for any question a and any atom e, e <, ¢[t~], e < [a], that 
there are two atoms e !, e I < [a], ande  2, e 2 < ~[~], such that 

e v e  I =e v e 2 = e  I q e  2 

holds true. We use these notations in the following discussion of  the super- 
position postulate. 

(A14) Let M • [a,], and [i] q: [0] .  Then [13] ~.-9[a] implies 
([il v ~[~l) A M  * [*l- 

To prove this, recall that ([13] v ~[a])  ^ [a] /> ([/3] ^ [a]) v ([a] ,~ ~[ct]) = 
[13] ^ [5] holds in any orthocomplemented lattice true. In the" non-trivial case, 
[a] ^ [i] = [q~], we have by the assumption [13] <~0[a] the existence of  at 
least one atom e, e < [13], e ¢ [a], and e ~ 9[c~]. So the superposition postulate 
applies, leading to ([i]  v ~o[a]) ^ [a] >/(e v e 2) ^ e ~ = (e v e l)  ^ e t = e I =b [q~]. 

(A15) Let [al :~ [a,l, [,x] < [131, [51 :~ [i]. Theng[a l  ^ [/3] 4: [~I,1. 
We have [i] ~ {*] and 9[a] :/: ¢[ i]  ~> [qs]. Moreover, [/3] N [cz] = 92 [a]. 

So by (AI4) @31 v ~2 [a]) ^ tpta] = [i] ^ 9[a I 4= I*1. 
(A16) Let [tx] < [13]; then 9[a] ^ [/3] = [q5] is equivalent to [ol]= [ill. 
The case [a] = [qb] is trivial. In case of  [ct] ~ [¢] the statement is easily 

proved with the help of (A15). 
(ART) [~l < [il  implies [a] v ([13] ^ 9[a] )  = [i], and [ i ]  ^ ([a] v ¢[ i ] )  = 

M.  
(A16) is just the criterion of  weak modularity stated by Theorem 2 of  

Section IV. This proves (A 17). 
(AI8) Let us be given an atom e and a question [ot], [a] :# [qb]. Then 

e ~o[~x] implies (e v 9[a] )  A [a] to be an atom. 
In ease e < [a] the statement holds trivially by (A 17). In the non-trivial 

case, e ~ [a], the superposition postulate applies to provide (e v 9[e])  ^ 
Its] ~ e I (recall the end of  the proof of  (A 14)). By e < e I v e 2 and e L < ~p[a] 
we have on the other hand (e v ~p[ct]) ^ [a] < ( e  I v e 2 v 9[a])  A [a] = 
(e 1 V 9[c~]) A [a] = e  I because o re  I < [tx] and (AI7). 

(A19) Let us be given an atom e, e ~ [ct], then [ct] < [/3] < [ct] v e 
implies that either It] = [,~] or [13] = [¢t] v e. 

We have [13] A ¢[a] ~ (e v [0t]) ^ ~[tx] which is an atom by (A18). So 
either [/3] ^ ~[a] = [¢] or [i] ^ ¢[tx] = (e v [ a ] )  ^ ~[~x]. In the first case, 
L~] = [a] is implied by (A16). In the second case, (AI7) provides [13] = 
([il'^ 9[al) v {al =((e v [al) ^ 9[al) v [al =(ev [a]). 



288 IC-E. HELLWIG AND D. KRAUSSER 

Statements (A17) and (AI9)  provide the first part of  the proof  of  
Theorem 4. 

We assume now, conversely, weak modularity and the covering law, i.e. we 
use (AI6) ,  (A17), and (AI9)  to derive the superposition postulate. For this 
purpose, we make technical use of  compatibility theory in the weak modular 
case.We write [7] ~ [5] iff [7] and [~5] are compatible, i.e. belong to a 
boolean sublattice of  ([.,~ ], ~<, ¢). We need the following results (Piron, I964, 
Appendix, Theorems VII and VIII):  

(A20) (1) [7] ~< [b] implies [3'] *~ [5]. 
(2) [7] ~" [5] implies [7] "~" ~[5] .  
(3) If  [7] "~" [tn ] (n = 1, 2), then 

[71 v ([811 ^ [8~1)= ([v] v [~ l ] )^  ([v] v [52]), 
[7] ^ ( [ ~ ]  v [~21)--(['rl ^ [ ~ ] ) v ( [ v l  ^ [821)- 

Now let a be any question and e be any atom with e ~ [a] ,  and e ~ tp[a]. 
Then 

(A21) e I := (e v ~ [a ] )  g [a],  and e 2 := (e v [ a ] )  ^ ¢[~] are atoms. 
We prove this for e2: Assume e ~ = [~] ,  then (A16) applies to give e v [a] = 

[a] ,  a contradiction. Hence e 2 ~ [~] .  
Let us be given an atom d, d ~< e 2, then [a] ~< d v [a I ~< e 2 v [a] .  Use of  

(A20) provides e 2 v [a] = e v [a] ,  so [a] ~< d v [a] ~< e 2 v [a] = e v [a]. 
From d ~<e 2 ~< ¢[ct] :~ [[] we have [a] ~ d  v [c 4 .  So (AI9)  gives e v [al = 
d v [ct] = e 2 v [a].  From this and ( A l 7 ) d  = e 2 is easily concluded, which 
proves e 2 to be an atom. Similarly one proves the statement for e I. As a by- 
product we have: 

(A22) e v  [ct] = e  2 v [ a ] , a n d e v ~ [ a ] = e  I v~[c~]. 
Now the formula 
(A23) e v e  I = e v e  2 = e  I v e  ~ 

is easily derived by the use of  (A20) and (A22): From e t < [a] we have 

e'  v e 2 = ((e v [ a ] )  ^ e l )  v ((e v [c~]) ^ ¢[~1) .  

(A20) and (A22)lead to (e v [c~]) .0 e l, (e v [t~]) .~, ¢[c~], and 

elv e2 = ( e  v [ a ] ) ^  (e ! ^ ¢[c~l). 

We now have, from (A22) and (A20), that (e I v ~p[a]) --, e, and (e 1 v ~ [a ] )  .- 
[a],  and 

e I v e 2 = (e ^ (e 1 v ¢[c~1)) v ([0l] ^ (e I v ¢ [a ] ) ) .  

Use of  (A22) provides 

e I v e 2 = e v e  I. 

Analogously one checks e I v e 2 = e v e 2. 
Definition (A21) and Formula (A23) show the superposition postulate to 

hold true, which completes the proof of  Theorem 4. 
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